
Contents 1

2 Contents

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

BACKTRADER ESSENTIALS: BUILDING SUCCESSFUL STRATEGIES WITH PYTHON

Written by Ali AZARY

First edition, 2025

10 9 8 7 6 5 4 3 2 1

Copyright © 2025 Ali Azary

All rights reserved. No part of this book may be reproduced,

stored, or transmitted in any form without prior permission of the publisher.

ISBN 979-8230304517

Published by Ali AZARY

www.aliazary.com

Contents 3

Contents

Contents .. 3

Preface ... 6

Chapter 1: Backtrader Basics & Data Feeds .. 9

Setting the Stage: Imports .. 9

Acquiring Historical Market Data .. 10

Feeding Data into Backtrader ... 11

The Cerebro Engine: Setting the Stage ... 12

Adding a Minimal Strategy and Running the Test ... 13

Visualizing Results: Plotting ... 15

Putting It All Together: Full Script ... 17

Chapter Summary .. 20

Chapter 2: Built-In Indicators ... 21

Indicators as Strategy Building Blocks ... 21

The Simple Moving Average (SMA) - Concept .. 21

Implementing SMA in Backtrader ... 22

Accessing SMA Values ... 24

SMA Use Case: Crossover Logic Examples ... 25

The Relative Strength Index (RSI) - Concept ... 26

Implementing RSI in Backtrader .. 27

RSI Use Case: Overbought/Oversold Signal Logic .. 28

Chaining Indicators: Smoothing the RSI ... 30

Hands-On: The MyStrategyWithIndicators Code .. 31

Code Walkthrough & Cerebro Integration .. 33

Chapter Summary .. 38

Chapter 3: Multi-Line Indicators ... 40

Introduction: Beyond Single Lines .. 40

Moving Average Convergence Divergence (MACD) - Concept .. 40

MACD - Purpose and Signals .. 41

Implementing MACD in Backtrader .. 42

Bollinger Bands (BBands) - Concept & Purpose .. 44

4 Contents

Implementing Bollinger Bands in Backtrader ... 45

Hands-On: MyMultiLineIndicatorStrategy Walkthrough ... 46

Chapter Summary .. 53

Chapter 4: Trend Strength – ADX System ... 54

Introduction: Measuring Trend Strength .. 54

Understanding the Directional Indicators: +DI and -DI .. 54

Interpretation of +DI and -DI:... 55

Understanding the ADX Line: The Trend Strength Gauge ... 55

Implementing the ADX System in Backtrader .. 56

Full Example Code: AdxStrategyExample ... 62

Code Walkthrough: AdxStrategyExample .. 64

Chapter Summary .. 68

Chapter 5: Mean-Reversion & Momentum .. 69

Introduction: Mean Reversion vs. Momentum ... 69

Bollinger Bands Strategy: Mean Reversion Approach ... 69

RSI Strategy: Overbought/Oversold Reversals ... 72

MACD Strategy: Momentum/Trend Crossover Approach ... 75

MACD Strategy Discussion & Comparative Context ... 78

Chapter Summary: ... 79

Chapter 6: Custom Indicators .. 80

Introduction: Extending Backtrader's Arsenal ... 80

Anatomy of a Custom Indicator: Structure .. 80

Minimum Period & Rate of Change (ROC) Example - Concept & Code ... 84

Using the Custom Indicator in a Strategy .. 86

Chapter Summary: ... 89

Chapter 7: Combining Signals ... 91

Introduction: The Quest for Robust Signals .. 91

Filtering Example: SMA Crossover + RSI .. 91

SmaCrossFiltered - Walkthrough... 94

Beyond Signal Reversal: Position Management & Exit Rules ... 96

Applying Exit Concepts & Best Practices Introduction ... 97

Advanced Filtering and Exits: SMA + RSI + ADX + ATR + Bracket Orders ... 98

Implementation (Enhanced SmaCrossFiltered): ... 98

Advanced Strategy Walkthrough .. 102

Contents 5

Best Practices for Signal Robustness .. 104

Chapter Summary: ... 106

Chapter 8: Analyzers, Optimization & Next Steps ... 107

Introduction: Evaluating and Improving ... 107

Measuring Performance with Analyzers ... 107

Key Built-in Analyzers: .. 108

Interpreting Analyzer Results .. 110

Introduction to Parameter Optimization .. 110

6 Preface

Preface

Technical analysis. For generations, traders and investors have peered at charts, drawing lines,
identifying patterns, and calculating indicators, all in an attempt to decipher the market’s next move.
From Moving Averages and RSI to MACD and Bollinger Bands, these mathematical tools transform raw
price and volume data into potentially actionable insights about trends, momentum, and volatility.

But manual analysis, while valuable for developing intuition, has its limits. Keeping track of multiple
indicators across various assets and timeframes in real-time is demanding. Drawing trendlines can be
subjective. More importantly, executing trades based on fleeting chart signals consistently, without
emotional interference, is a significant challenge for even seasoned traders. How do you know if that
SMA crossover strategy truly worked over the last five years, not just the last five days? How do you
rigorously test the impact of adding an RSI filter?

This is where the power of automation comes in, and where backtrader, a flexible and powerful open-
source Python framework, truly shines.

Why Automate Technical Indicators?

Automating the calculation, analysis, and even the execution of trading signals based on technical
indicators offers compelling advantages:

Speed and Efficiency: Backtest decades of historical data in minutes, not months. Evaluate strategy
variations rapidly.

Objectivity and Consistency: Rules are coded and executed precisely the same way, every single time,
eliminating emotional decision-making (fear, greed) and subjective interpretation at the point of
execution.3

Rigorous Testing: Quantify the historical performance of a trading idea. Did it actually work? Under
what conditions? What were the risks? Backtesting provides data-driven answers.

Broader Scope: Simultaneously monitor and analyze numerous indicators across multiple financial
instruments and timeframes – a task impossible to perform manually.

Discovery: Systematic testing can reveal subtle interactions between indicators or optimal parameter
settings that are not intuitively obvious.

Foundation for Automation: A thoroughly backtested strategy is the essential first step towards
building a potentially automated trading system.

backtrader allows you to take the standard technical indicators you might use on a charting platform,
implement them with code, combine them into logical trading rules, and test their performance
systematically. It bridges the gap between trading ideas and quantifiable results.

Preface 7

Who This Guide Is For

This guide is designed as a concise, practical introduction to using backtrader, with a specific focus
on leveraging technical indicators for signal generation. It’s aimed at two primary groups:

Python Users: If you have a grasp of Python basics (variables, loops, functions, classes) and are
interested in applying your programming skills to the financial markets, quantitative analysis, or
algorithmic trading, this guide is for you. You don’t necessarily need deep financial expertise to start;
backtrader provides the tools, and this guide provides the context to build indicator-based strategies.

Traders and Market Analysts: If you are familiar with technical analysis concepts, charting, and
perhaps some discretionary trading, but want to move towards more systematic, evidence-based
methods, this guide will show you how. You’ll learn to translate your indicator knowledge into Python
code, test your strategies rigorously, and remove the guesswork and emotional stress from rule-based
trading.

Whether you’re a student exploring quantitative finance, a developer curious about trading
applications, or a trader seeking automation, this guide aims to get you up and running quickly with
the core functionalities of `backtrader needed for indicator-driven strategies.

Setup: Your Development Environment

Before diving in, you’ll need a working Python environment and a few key libraries. We assume you
have Python installed (ideally version 3.6 or newer). You can check your installation by opening a
terminal or command prompt and typing python --version or python3 --version. If you don’t
have Python, download it from python.org.

With Python ready, install the necessary libraries using pip, Python’s package installer. Open your
terminal or command prompt and run the following commands:

Install Backtrader: This is the core backtesting framework.

Bash

pip install backtrader

Install Matplotlib: Used by backtrader for plotting results (charts, indicators, trades).

Bash

pip install matplotlib

Install yfinance (Optional but Recommended): While not strictly required for all examples (some
use built-in or local data), yfinance is a very convenient library for downloading historical market data
from Yahoo Finance, perfect for getting started quickly with different assets.

Bash

pip install yfinance

8 Preface

With these libraries installed, you have the essential toolkit ready.

This guide will walk you through loading data, defining strategies, implementing built-in and custom
technical indicators, combining their signals, placing simulated orders, and analyzing the performance
of your backtests. Let’s begin exploring the world of systematic trading with Python and backtrader.

Chapter 1: Backtrader Basics & Data Feeds 9

Chapter 1: Backtrader Basics & Data Feeds

Welcome to the practical core of our journey! In this chapter, we'll move from concept to code. We'll
set up our first backtrader script, focusing on the essential scaffolding: importing necessary tools,
fetching historical market data, and introducing the main engine that powers backtrader simulations
– Cerebro. By the end of this chapter, you'll have a working script that loads data and runs a (very
simple) backtest, laying the groundwork for the indicator-based strategies we'll build later.

Setting the Stage: Imports

Every Python script starts by importing the libraries it needs. For our backtrader work, especially in
these initial stages, we'll typically need the following:

 backtrader: The core library itself, usually imported with the alias bt for brevity.
 datetime: Python's built-in library for handling dates and times, often needed for specifying

date ranges.
 pandas: A fundamental library for data manipulation in Python. While backtrader can work

with various data formats, we'll often use Pandas DataFrames as an intermediary, especially
when fetching data from external sources.

 yfinance: A popular library for downloading historical market data from Yahoo Finance. It's a
convenient way to get data for testing purposes.

 matplotlib: Although we often don't import it directly into our script using import
matplotlib, backtrader uses it behind the scenes for plotting. Ensuring it's installed (as
covered in the Preface) is crucial for visualization.

Let's start our script with the standard imports:

-*- coding: utf-8 -*-
chapter1_basics.py
!pip install backtrader yfinance pandas matplotlib
Import necessary libraries
from __future__ import (absolute_import, division, print_function,
 unicode_literals)

import backtrader as bt
import datetime
import pandas as pd
import yfinance as yf # Import yfinance

print("Libraries Imported Successfully!")

The first line (# -*- coding: utf-8 -*-) specifies the file encoding, which is good practice.
The __future__ imports ensure compatibility between Python 2 and 3, which is standard practice in
many backtrader examples, although less critical if you are exclusively using Python 3. The main
imports bring in backtrader as bt, datetime, pandas as pd, and yfinance as yf.

10 Chapter 1: Backtrader Basics & Data Feeds

Acquiring Historical Market Data

A backtest needs historical data to simulate trading. This data typically includes the Open, High, Low,
and Close prices (OHLC), along with the trading Volume for each period (e.g., daily, hourly). Sometimes,
Open Interest is also included, especially for futures contracts.

For this guide, we'll primarily use yfinance to download data. It's simple and provides easy access to
a vast range of assets. Let's download daily data for Apple (ticker: AAPL) for a specific period.

Define the ticker symbol and date range
ticker = 'AAPL'
start_date = '2020-01-01'
end_date = '2023-12-31' # Use a date in the past

print(f"Downloading {ticker} data from {start_date} to {end_date}...")

Download data using yfinance
try:
 # Use yf.download for simplicity
 dataframe = yf.download(ticker, start=start_date, end=end_date)
 dataframe.columns = dataframe.columns.droplevel(1)
 print(f"Data downloaded successfully. Shape: {dataframe.shape}")

 # Check the first few rows and column names
 print("\nDataFrame Head:")
 print(dataframe.head())

 print("\nDataFrame Info:")
 dataframe.info()

except Exception as e:
 print(f"Error downloading data: {e}")
 # Exit or handle error appropriately
 exit()

Ensure the DataFrame index is a DatetimeIndex (yf.download usually does
this)
if not isinstance(dataframe.index, pd.DatetimeIndex):
 print("Converting index to DatetimeIndex...")
 dataframe.index = pd.to_datetime(dataframe.index)

print("\nData is ready in Pandas DataFrame format.")

[*********************100%***********************] 1 of 1 completed
Downloading AAPL data from 2020-01-01 to 2023-12-31...
Data downloaded successfully. Shape: (1006, 5)

DataFrame Head:
Price Close High Low Open Volume
Date
2020-01-02 72.716064 72.776591 71.466805 71.721011 135480400
2020-01-03 72.009140 72.771768 71.783985 71.941351 146322800
2020-01-06 72.582909 72.621646 70.876075 71.127866 118387200

Chapter 1: Backtrader Basics & Data Feeds 11

2020-01-07 72.241524 72.849201 72.021208 72.592571 108872000
2020-01-08 73.403648 73.706279 71.943759 71.943759 132079200

DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1006 entries, 2020-01-02 to 2023-12-29
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Close 1006 non-null float64
 1 High 1006 non-null float64
 2 Low 1006 non-null float64
 3 Open 1006 non-null float64
 4 Volume 1006 non-null int64
dtypes: float64(4), int64(1)
memory usage: 47.2 KB

Data is ready in Pandas DataFrame format.

This code snippet defines the stock ticker and the date range. It then calls yf.download(), which
returns the historical data as a Pandas DataFrame. We print the "head" (first few rows) and the "info"
(column names and data types) to inspect the result.

You should see columns like Open, High, Low, Close, Adj Close (Adjusted Close, accounting for
dividends and stock splits), and Volume. The index of the DataFrame should be the Date. Having
a DatetimeIndex is crucial for time-series analysis and for backtrader.

Feeding Data into Backtrader

backtrader doesn't work directly with Pandas DataFrames. It uses its own optimized Data
Feed objects. Fortunately, it provides convenient ways to convert common formats, like Pandas
DataFrames, into these Data Feed objects.

The primary tool for this is bt.feeds.PandasData. We need to tell it which DataFrame to use and,
optionally, how the columns in our DataFrame map to the standard OHLCV names
that backtrader expects (open, high, low, close, volume, openinterest).

By default, bt.feeds.PandasData looks for columns with these exact lowercase names, or variations
like 'Open', 'High', 'Low', 'Close', 'Volume'. The column names
from yfinance (Open, High, Low, Close, Volume) usually match well enough for the defaults to work for
the basic OHLCV fields.

Let's create a backtrader data feed from our downloaded DataFrame:

Create a Backtrader Data Feed from the Pandas DataFrame
Ensure the DataFrame has the expected column names or map them explicitly
Default expected names: open, high, low, close, volume, openinterest
yfinance names (Open, High, Low, Close, Adj Close, Volume) are usually
compatible

12 Chapter 1: Backtrader Basics & Data Feeds

data = bt.feeds.PandasData(
 dataname=dataframe,
 fromdate=datetime.datetime.strptime(start_date, '%Y-%m-%d'), # Optional:
Set start date filter
 todate=datetime.datetime.strptime(end_date, '%Y-%m-%d') # Optional:
Set end date filter
)

print(f"\nBacktrader Data Feed created: {data}")

Backtrader Data Feed created: <backtrader.feeds.pandafeed.PandasData object a
t 0x7d44de125610>

Here, dataname=dataframe tells PandasData to use our DataFrame. We also explicitly
pass fromdate and todate using datetime objects converted from our start/end date strings.
While PandasData can infer the range, explicitly setting it ensures backtrader only operates within the
desired window, matching the downloaded data range.

Note on Adjusted Close: For serious backtesting, using the Adj Close price (which accounts for
dividends and splits) is often preferred over the nominal Close price. PandasData can be configured
to use different columns. For example: bt.feeds.PandasData(dataname=dataframe, close='Adj
Close', ...). For simplicity in this initial chapter, we'll stick with the default 'Close'.

The Cerebro Engine: Setting the Stage

Now that we have our data prepared in a format backtrader understands, we need to introduce the
main controller: the Cerebro engine. Think of Cerebro (Spanish for "brain") as the orchestrator of your
backtest. It brings together the data feeds, the trading strategy, the broker simulation (cash,
commissions), and any analyzers you might want to use.

Let's create a Cerebro instance and configure some basic settings:

Create a Cerebro entity
cerebro = bt.Cerebro()
print("\nCerebro engine initialized.")

Add the Data Feed to Cerebro
cerebro.adddata(data)
print(f"Data feed added to Cerebro.")

Set our desired cash start
initial_cash = 10000.0
cerebro.broker.setcash(initial_cash)
print(f"Initial cash set to: ${initial_cash:,.2f}")

Set the commission scheme
Example: 0.1% commission per trade (0.001)
commission_perc = 0.001 # 0.1%
cerebro.broker.setcommission(commission=commission_perc)
print(f"Commission set to: {commission_perc*100:.3f}% per trade")

Chapter 1: Backtrader Basics & Data Feeds 13

--- Strategy will be added here later ---
cerebro.addstrategy(YourStrategyClass)

Cerebro engine initialized.
Data feed added to Cerebro.
Initial cash set to: $10,000.00
Commission set to: 0.100% per trade

In this block:

1. cerebro = bt.Cerebro(): We create the main engine instance.
2. cerebro.adddata(data): We attach our prepared data feed. You can add multiple data

feeds if your strategy trades multiple assets or uses different timeframes.
3. cerebro.broker.setcash(...): We tell the simulated broker how much starting capital our

strategy has.
4. cerebro.broker.setcommission(...): We define the transaction costs. Ignoring

commissions can drastically overestimate performance, so it's crucial to include a realistic
estimate. Here, we set a 0.1% commission per trade.

Cerebro is now aware of our market data and the initial trading conditions (cash, commission). The
next step is to give it a strategy to execute.

Adding a Minimal Strategy and Running the Test

A backtest isn't complete without a trading strategy. backtrader strategies are defined as Python
classes inheriting from bt.Strategy. For now, we'll create the simplest possible strategy – one that
doesn't actually trade but prints a message during initialization and potentially logs some data in
its next method. The next method is the heart of a strategy, called by Cerebro for each bar of data
(after an initial warm-up period for indicators, which we'll cover later).

Define a simple Strategy
class MyFirstStrategy(bt.Strategy):
 params = (
 ('exitbars', 5), # Example parameter
)

 def log(self, txt, dt=None):
 ''' Logging function for this strategy'''
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()} - {txt}') # Print date and message

 def __init__(self):
 # Keep a reference to the "close" line in the data[0] dataseries
 self.dataclose = self.datas[0].close
 self.log('MyFirstStrategy Initialized')
 # To keep track of pending orders
 self.order = None

 def notify_order(self, order):

14 Chapter 1: Backtrader Basics & Data Feeds

 # Basic notification logic (we'll expand this later)
 if order.status in [order.Submitted, order.Accepted]:
 # Buy/Sell order submitted/accepted to/by broker - Nothing to do
 self.log(f'ORDER {order.getstatusname()}')
 return

 # Check if an order has been completed
 if order.status in [order.Completed]:
 if order.isbuy():
 self.log(f'BUY EXECUTED, Price: {order.executed.price:.2f},
Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
 elif order.issell():
 self.log(f'SELL EXECUTED, Price: {order.executed.price:.2f},
Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}')
 # self.bar_executed = len(self) # Optional: Record bar when
executed

 elif order.status in [order.Canceled, order.Margin, order.Rejected]:
 self.log(f'Order {order.getstatusname()}')

 self.order = None # Reset order status

 def next(self):
 # Simply log the closing price of the series from the reference
 # self.log(f'Close Price: {self.dataclose[0]:.2f}')

 # Basic logic example: Buy on the first bar, sell after N bars
 if len(self) == 1: # Check if it's the first bar
 if not self.position: # Check if not in market
 self.log('BUY CREATE, %.2f' % self.dataclose[0])
 self.order = self.buy() # Place a market buy order

 # Sell after holding for 'exitbars' days
 elif len(self) >= self.params.exitbars + 1 :
 if self.position: # Check if in market
 self.log('SELL CREATE, %.2f' % self.dataclose[0])
 self.order = self.sell() # Place a market sell order

Add the strategy to Cerebro
cerebro.addstrategy(MyFirstStrategy)
print("\nStrategy added to Cerebro.")

Run the backtest
print("\nRunning backtest...")
print(f'Starting Portfolio Value: {cerebro.broker.getvalue():,.2f}')

Run over everything
results = cerebro.run() # Execute the backtest
first_strategy_instance = results[0] # Get the first strategy instance

print(f'Final Portfolio Value: {cerebro.broker.getvalue():,.2f}')
print("Backtest complete.")

Strategy added to Cerebro.

Running backtest...

Chapter 1: Backtrader Basics & Data Feeds 15

Starting Portfolio Value: 10,000.00
2023-12-29 - MyFirstStrategy Initialized
2020-01-02 - BUY CREATE, 72.72
2020-01-03 - ORDER Submitted
2020-01-03 - ORDER Accepted
2020-01-03 - BUY EXECUTED, Price: 71.94, Cost: 71.94, Comm 0.07
2020-01-09 - SELL CREATE, 74.96
2020-01-10 - ORDER Submitted
2020-01-10 - ORDER Accepted
2020-01-10 - SELL EXECUTED, Price: 75.20, Cost: 71.94, Comm 0.08
Final Portfolio Value: 10,003.11
Backtest complete.

Here, MyFirstStrategy includes:

 A log method for consistent output formatting.
 __init__: Stores the closing price line and logs initialization.
 notify_order: A basic method to log order status changes (essential for debugging later).

We'll enhance this in future chapters.
 next: Contains the core logic. Here, it just logs the closing price on each bar and includes a

very simple buy-and-hold-for-N-bars example to demonstrate basic order placement
(self.buy(), self.sell()) and position checking (self.position). This makes the output
slightly more interesting than doing nothing.

 cerebro.addstrategy(MyFirstStrategy): We register our strategy class with Cerebro.
 cerebro.run(): This is the command that starts the simulation. Cerebro loops through the

data, calling the strategy's next method for each bar.
 We print the portfolio value before and after the run to see the impact of the (minimal) trading

activity and commissions.

Visualizing Results: Plotting

Numbers are essential, but a visual representation can often provide much deeper insights into
strategy behavior. backtrader integrates with matplotlib to generate informative charts directly
from the Cerebro engine after a run.

To plot the results, simply call cerebro.plot():

Plot the results
import matplotlib
%matplotlib inline

print("\nGenerating plot...")
try:
 # style='candlestick' is visually appealing for OHLC data
 cerebro.plot(style='candlestick', barup='green', bardown='red',
volume=True, iplot=False, show=False)

16 Chapter 1: Backtrader Basics & Data Feeds

 print("Plot displayed.") # In interactive environments, plot shows
automatically
 # In scripts, might save to file or display
window
except Exception as e:
 print(f"Could not plot results: {e}. Ensure matplotlib is installed and
working.")

Generating plot...

Plot displayed.

This command generates a chart typically showing:

 The main price data (as an OHLC chart or candlestick chart).
 Volume bars below the price.
 Any indicators added by the strategy (we'll see this later).
 Buy (upward triangle) and Sell (downward triangle) markers on the price chart where trades

occurred.
 Portfolio value/equity curve (in later examples with analyzers).

The style='candlestick' makes the price chart more traditional. barup and bardown customize the
candle colors.

Chapter 1: Backtrader Basics & Data Feeds 17

Putting It All Together: Full Script

Here is the complete script combining all the steps from this chapter:

-*- coding: utf-8 -*-
chapter1_basics_full.py

from __future__ import (absolute_import, division, print_function,
 unicode_literals)

import backtrader as bt
import datetime
import pandas as pd
import yfinance as yf

1. Download Data
ticker = 'AAPL'
start_date = '2020-01-01'
end_date = '2023-12-31'
print(f"Downloading {ticker} data from {start_date} to {end_date}...")
try:
 dataframe = yf.download(ticker, start=start_date, end=end_date)
 dataframe.columns = dataframe.columns.droplevel(1)
 print(f"Data downloaded successfully. Shape: {dataframe.shape}")
 if dataframe.empty:
 print("No data downloaded, please check ticker and dates.")
 exit()
 if not isinstance(dataframe.index, pd.DatetimeIndex):
 dataframe.index = pd.to_datetime(dataframe.index)
except Exception as e:
 print(f"Error downloading data: {e}")
 exit()

2. Create Backtrader Data Feed
data = bt.feeds.PandasData(
 dataname=dataframe,
 fromdate=datetime.datetime.strptime(start_date, '%Y-%m-%d'),
 todate=datetime.datetime.strptime(end_date, '%Y-%m-%d')
)

3. Define Strategy
class MyFirstStrategy(bt.Strategy):
 params = (('exitbars', 5),)

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()} - {txt}')

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.order = None
 self.buyprice = None
 self.buycomm = None
 self.log('MyFirstStrategy Initialized')

18 Chapter 1: Backtrader Basics & Data Feeds

 def notify_order(self, order):
 if order.status in [order.Submitted, order.Accepted]:
 # self.log(f'ORDER {order.getstatusname()}') # Can be verbose
 return
 if order.status in [order.Completed]:
 if order.isbuy():
 self.log(f'BUY EXECUTED, Price: {order.executed.price:.2f},
Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2f}')
 self.buyprice = order.executed.price
 self.buycomm = order.executed.comm
 elif order.issell():
 self.log(f'SELL EXECUTED, Price: {order.executed.price:.2f},
Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2f}')
 # self.bar_executed = len(self)
 elif order.status in [order.Canceled, order.Margin, order.Rejected]:
 self.log(f'Order {order.getstatusname()}')
 self.order = None

 def notify_trade(self, trade):
 if trade.isclosed:
 self.log(f'TRADE PROFIT, GROSS {trade.pnl:.2f}, NET
{trade.pnlcomm:.2f}')

 def next(self):
 # Log closing price
 # self.log(f'Close, {self.dataclose[0]:.2f}')

 # Check if an order is pending ... if yes, we cannot send a 2nd one
 if self.order:
 return

 # Check if we are in the market
 if not self.position:
 # Not yet ... we MIGHT BUY if ...
 if len(self) == 1: # Buy on first bar only for this simple
example
 self.log('BUY CREATE, %.2f' % self.dataclose[0])
 self.order = self.buy()
 else:
 # Already in the market ... we might sell
 if len(self) >= (self.bar_executed + self.params.exitbars): #
Sell after holding N bars
 self.log('SELL CREATE, %.2f' % self.dataclose[0])
 self.order = self.sell()

 # Need bar_executed for the simple exit logic above
 def __init__(self): # Redefine __init__ to include bar_executed
 self.dataclose = self.datas[0].close
 self.order = None
 self.buyprice = None
 self.buycomm = None
 self.bar_executed = 0 # Initialize bar_executed
 self.log('MyFirstStrategy Initialized')

 def notify_order(self, order): # Need to update bar_executed on
completion
 # ... (previous notify_order code) ...

Chapter 1: Backtrader Basics & Data Feeds 19

 if order.status in [order.Completed]:
 # ... (buy/sell logging) ...
 if order.isbuy():
 self.bar_executed = len(self) # Record bar number when buy is
executed
 # elif order.issell(): # Not needed for this simple exit logic
 # ... (rest of notify_order code) ...

4. Set up Cerebro
cerebro = bt.Cerebro()
cerebro.addstrategy(MyFirstStrategy)
cerebro.adddata(data)
cerebro.broker.setcash(10000.0)
cerebro.broker.setcommission(commission=0.001)

5. Run and Plot
import matplotlib
%matplotlib inline
print(f'\nStarting Portfolio Value: {cerebro.broker.getvalue():,.2f}')
results = cerebro.run()
print(f'Final Portfolio Value: {cerebro.broker.getvalue():,.2f}')

print("\nGenerating plot...")
try:
 cerebro.plot(style='candlestick', barup='green', bardown='red',
volume=True, iplot=False)
 print("Plot displayed/saved.")
except Exception as e:
 print(f"Could not plot results: {e}")

[*********************100%***********************] 1 of 1 completed
Downloading AAPL data from 2020-01-01 to 2023-12-31...
Data downloaded successfully. Shape: (1006, 5)

Starting Portfolio Value: 10,000.00
2023-12-29 - MyFirstStrategy Initialized
2020-01-02 - BUY CREATE, 72.72
Final Portfolio Value: 10,119.37

Generating plot...

20 Chapter 1: Backtrader Basics & Data Feeds

Plot displayed/saved.

Note: Added notify_trade and refined the simple buy/sell logic in the full script example to make it
slightly more complete and ensure the exit logic works correctly by tracking bar_executed.

Chapter Summary

Congratulations! You've successfully set up and executed your first backtrader backtest. We covered
the essential steps:

 Importing necessary libraries.
 Downloading historical data using yfinance.
 Converting the data into a backtrader feed using bt.feeds.PandasData.
 Initializing the Cerebro engine and configuring the broker (cash, commission).
 Defining and adding a minimal bt.Strategy.
 Running the backtest with cerebro.run().
 Visualizing the results with cerebro.plot().

This foundational workflow is the basis upon which we will build more complex, indicator-driven
strategies in the coming chapters. You now have a template for loading data and running a backtest.
Next, we'll dive into the core focus: implementing and utilizing technical indicators within your
strategies.

Chapter 2: Built-In Indicators 21

Chapter 2: Built-In Indicators

Indicators as Strategy Building Blocks

In Chapter 1, we successfully set up our backtrader environment, loaded historical market data, and
ran a minimal backtest using the Cerebro engine. We have the scaffolding in place, but a strategy
needs logic – rules that decide when to buy or sell. In the world of technical analysis, these rules are
most often derived from Technical Indicators.

Technical indicators are mathematical calculations based on an asset's price, volume, or other data
points. They aim to distill complex market action into more easily interpretable signals, helping traders
identify trends, measure momentum, gauge volatility, or spot potential reversals.

backtrader treats indicators as fundamental components. As we touched upon briefly, it has a
sophisticated system for handling them:

 First-Class Citizens: Indicators are core objects within the framework, not just afterthoughts.
 Lines Concept: Indicators (like data feeds) operate on "lines". They take one or more input

lines (e.g., the close line from a data feed) and produce one or more output lines (e.g., the
SMA value line, the RSI value line).

 Automatic minperiod: When you use an indicator requiring N periods of data (like a 20-
period SMA), backtrader automatically calculates this minimum period (minperiod). It
ensures that your strategy's next() method only starts receiving calls after all indicators have
enough data to produce their first valid output, preventing errors based on insufficient initial
data.

 Composability: Indicators can be applied not just to raw data but also to the output lines
of other indicators, allowing for complex, layered analysis.

 Efficiency: Indicator calculations are often optimized within the backtrader framework.

Most of the commonly used technical indicators are readily available within
the backtrader.indicators submodule, which is often imported or accessed via the shorter
alias bt.ind.

This chapter marks our deep dive into using these built-in indicators. We'll start with two of the most
fundamental and widely used: the Simple Moving Average (SMA) and the Relative Strength Index
(RSI). We will learn how to implement them in a backtrader strategy, access their values, and
understand how they can form the basis of trading signals.

The Simple Moving Average (SMA) - Concept

The Simple Moving Average is arguably the most basic and popular trend-following indicator. As the
name suggests, it calculates the average price of an asset over a specified number of past periods.

What is it? An SMA is calculated by summing the closing prices for the last 'N' periods and then
dividing that sum by 'N'. For example, a 20-period SMA takes the sum of the closing prices of the last

22 Chapter 2: Built-In Indicators

20 bars (days, hours, etc.) and divides by 20. As a new bar forms, the oldest price in the calculation is
dropped, and the newest price is added, causing the average to "move" over time.

Purpose: The primary purpose of an SMA is to smooth out price action and help identify the
underlying trend direction. By averaging prices, it filters out the day-to-day noise and volatility,
providing a clearer picture of the market's general trajectory.

 Trend Identification: If the price is consistently trading above a rising SMA, it generally
suggests an uptrend. Conversely, if the price is below a falling SMA, it suggests a downtrend.
The slope of the SMA itself can also indicate trend strength.

 Support and Resistance: Longer-term SMAs (like the 50-day or 200-day SMA) are often
watched by market participants and can act as dynamic levels of support (in an uptrend) or
resistance (in a downtrend).

 Signal Generation: Crossovers between the price and the SMA, or crossovers between two
SMAs of different lengths (a "fast" short-period SMA and a "slow" long-period SMA), are
commonly used to generate buy or sell signals.

Visual Representation: On a price chart, the SMA appears as a single line that follows the general
path of the price but is smoother and lags slightly behind it.

The period Parameter: The key parameter for an SMA is its period (N). This determines how many
past bars are included in the average.

 Shorter Period (e.g., 10, 20): The SMA will react more quickly to recent price changes,
resulting in a line that follows the price more closely but is also more susceptible to noise
("whipsaws").

 Longer Period (e.g., 50, 100, 200): The SMA will be smoother and less reactive to short-term
fluctuations, providing a clearer view of the longer-term trend but generating signals with
more lag.

Choosing the right period(s) often depends on the trading style (short-term vs. long-term) and the
characteristics of the asset being traded.

Implementing SMA in Backtrader

backtrader makes using an SMA straightforward through its built-in SimpleMovingAverage indicator
class.

The Class: You can access it via backtrader.indicators.SimpleMovingAverage or its convenient
alias bt.ind.SMA.

Instantiation: You typically create an instance of the SMA indicator within your
strategy's __init__ method. This is where you define which data the indicator should operate on and
specify its parameters, most importantly the period.

Chapter 2: Built-In Indicators 23

!pip install backtrader
import backtrader as bt

class MySmaStrategy(bt.Strategy):
 params = (
 ('sma_period', 20), # Default SMA period parameter for the strategy
)

 def __init__(self):
 self.log('Initializing Strategy...')
 # Keep a reference to the closing price line
 self.dataclose = self.datas[0].close

 # Instantiate the Simple Moving Average indicator
 self.sma = bt.indicators.SimpleMovingAverage(
 self.datas[0], # The data feed to operate on (default: datas[0])
 # self.dataclose, # Can also explicitly pass the target line
 period=self.params.sma_period # The lookback period
)
 # You could also use the alias:
 # self.sma = bt.ind.SMA(self.datas[0], period=self.params.sma_period)

 self.log(f'SMA indicator created with period
{self.params.sma_period}')
 self.log('Strategy Initialized.')

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()} - {txt}')

 def next(self):
 # We will access self.sma here later
 pass

Collecting backtrader
 Downloading backtrader-1.9.78.123-py2.py3-none-any.whl.metadata (6.8 kB)
Downloading backtrader-1.9.78.123-py2.py3-none-any.whl (419 kB)
 ━━ 0.0/419
.5 kB ? eta -:--:--
 ━━ 419.5/4
19.5 kB 18.0 MB/s eta 0:00:00
Installing collected packages: backtrader
Successfully installed backtrader-1.9.78.123

Explanation:

1. params = (('sma_period', 20),): We define a strategy parameter sma_period with a
default value of 20. This allows us to easily change the SMA period when running the backtest
without modifying the core strategy code.

2. self.dataclose = self.datas[0].close: We store a reference to the 'close' price line of
the primary data feed (self.datas[0]) for convenience, although it's not strictly necessary for
instantiating the SMA itself.

3. self.sma = bt.indicators.SimpleMovingAverage(...): This is the core instantiation.

24 Chapter 2: Built-In Indicators

 The first argument, self.datas[0], tells the indicator which data feed to use. If
omitted, backtrader assumes self.datas[0]. If you explicitly provide a specific line
like self.dataclose or self.data.close, the indicator will use that specific line from
the default data feed.

 period=self.params.sma_period: We pass the desired lookback period, using the
value defined in our strategy params.

4. self.sma = ...: We store the created indicator object as an attribute of our strategy
instance (self.sma). This allows us to access its calculated values later in the next method.

Now, whenever the backtrader engine runs, it will automatically calculate the 20-period SMA for each
bar of our data feed.

Accessing SMA Values

Once the SMA indicator is instantiated in __init__, how do we get its calculated value for the current
or previous bars within our strategy's next() method?

This is where the "lines" concept is key. The self.sma object we created isn't just a single number; it
represents a line (or array) of SMA values calculated across the entire history of the data feed, up to
the current bar being processed by next().

We access these values using standard Python indexing, similar to accessing elements in a list or array:

 self.sma[0]: Gets the calculated SMA value for the current bar that the next() method is
currently evaluating.

 self.sma[-1]: Gets the SMA value for the previous bar.
 self.sma[-2]: Gets the SMA value from two bars ago.
 And so on... self.sma[-n] gets the value from n bars ago.

Example within next():

Inside the next() method of MySmaStrategy

Get the current SMA value
current_sma_value = self.sma[0]

Get the previous bar's SMA value
previous_sma_value = self.sma[-1]

Get the current closing price
current_close = self.dataclose[0]

Log the values (maybe periodically)
if len(self) % 10 == 0: # Log every 10 bars
 self.log(f'Bar Index: {len(self)}, Close: {current_close:.2f}, Current
SMA: {current_sma_value:.2f}, Previous SMA: {previous_sma_value:.2f}')

Chapter 2: Built-In Indicators 25

Minimum Period (minperiod) Handling: Remember, an N-period SMA requires N data points to
calculate its first value. For a 20-period SMA, self.sma[0] will only contain a valid number starting
from the 20th bar onwards (index 19, as indexing starts from 0). Before that, the value would
conceptually be 'Not a Number' (NaN).

You don't need to manually check if enough bars have passed. backtrader handles this automatically.
The next() method of your strategy will not be called by the Cerebro engine until all indicators
instantiated in __init__ have processed enough data to produce their first valid output. So, by the
time your next() method runs for the first time, you can safely access self.sma[0] (and similarly for
other indicators), knowing it corresponds to a valid calculation based on the indicator's
required minperiod.

This automatic handling simplifies strategy code significantly, as you don't need boilerplate checks for
data availability for each indicator.

SMA Use Case: Crossover Logic Examples

Accessing the current and previous values of the price and the SMA allows us to implement common
trading signals based on crossovers.

1. Price/SMA Crossover: A simple signal is generated when the price crosses above or below the
SMA.

Inside next()

Check for bullish crossover (price crosses above SMA)
if self.dataclose[0] > self.sma[0] and self.dataclose[-1] <= self.sma[-1]:
 self.log(f'BULLISH SIGNAL: Close {self.dataclose[0]:.2f} crossed ABOVE
SMA {self.sma[0]:.2f}')
 # --- Potential Buy Logic Here ---
 # self.buy()

Check for bearish crossover (price crosses below SMA)
elif self.dataclose[0] < self.sma[0] and self.dataclose[-1] >= self.sma[-1]:
 self.log(f'BEARISH SIGNAL: Close {self.dataclose[0]:.2f} crossed BELOW
SMA {self.sma[0]:.2f}')
 # --- Potential Sell/Close Logic Here ---
 # self.sell() / self.close()

This logic checks two conditions:

 The current relationship (e.g., close > sma).
 The previous relationship (e.g., close <= sma). Only when the relationship flips on the current

bar does the condition evaluate to True, indicating a crossover just occurred.

2. Two SMA Crossover ("Golden Cross" / "Death Cross" Concept): Another popular technique uses
two SMAs: a shorter-period "fast" SMA and a longer-period "slow" SMA. A buy signal might be
generated when the fast SMA crosses above the slow SMA (often called a "Golden Cross"), suggesting

26 Chapter 2: Built-In Indicators

increasing upward momentum. A sell signal might occur when the fast SMA crosses below the slow
SMA (a "Death Cross"), suggesting waning momentum or a potential downtrend.

Requires defining self.sma_fast and self.sma_slow in __init__
Example:
self.sma_fast = bt.ind.SMA(period=10)
self.sma_slow = bt.ind.SMA(period=30)

Inside next()

Check for bullish crossover (Fast SMA crosses above Slow SMA)
if self.sma_fast[0] > self.sma_slow[0] and self.sma_fast[-1] <=
self.sma_slow[-1]:
 self.log(f'BULLISH CROSS: Fast SMA ({self.sma_fast[0]:.2f}) crossed ABOVE
Slow SMA ({self.sma_slow[0]:.2f})')
 # --- Potential Buy Logic Here ---

Check for bearish crossover (Fast SMA crosses below Slow SMA)
elif self.sma_fast[0] < self.sma_slow[0] and self.sma_fast[-1] >=
self.sma_slow[-1]:
 self.log(f'BEARISH CROSS: Fast SMA ({self.sma_fast[0]:.2f}) crossed BELOW
Slow SMA ({self.sma_slow[0]:.2f})')
 # --- Potential Sell/Close Logic Here ---

Visual Confirmation: When you run cerebro.plot(), these SMA lines will be drawn directly on the
main price chart. This is invaluable for visually verifying your strategy's logic. You can see exactly where
the price crosses the SMA or where the two SMAs intersect, confirming if your code is correctly
identifying these events. The plot provides immediate feedback on how the indicator behaves relative
to price action.

The Relative Strength Index (RSI) - Concept

While the SMA helps identify trends, the Relative Strength Index (RSI) is a momentum oscillator.
Developed by the legendary J. Welles Wilder Jr. (who also created ADX and Parabolic SAR), RSI
measures the speed and change of price movements, helping to identify potential overbought or
oversold conditions in the market.

What is it? RSI compares the magnitude of recent gains to recent losses over a specified time period.
It calculates a ratio of the average gains on days the price closed up versus the average losses on days
the price closed down, typically over the last 14 periods. This ratio is then normalized to oscillate
between a fixed range of 0 and 100.

Purpose and Interpretation: RSI helps traders gauge whether an asset's price has moved too far, too
fast, potentially indicating an upcoming reversal or pause.

 Overbought/Oversold Thresholds: This is the most common use of RSI.
 Overbought: Readings above a certain level (traditionally 70, sometimes 80) suggest

that the asset has experienced strong buying pressure recently and might be

Chapter 2: Built-In Indicators 27

overvalued or due for a corrective pullback. It's considered a potential area to look for
sell signals or take profits on long positions.

 Oversold: Readings below a certain level (traditionally 30, sometimes 20) suggest the
asset has faced strong selling pressure and might be undervalued or due for a relief
rally (bounce). It's considered a potential area to look for buy signals or cover short
positions.

 Centerline Crossovers: The 50 level is often considered a centerline. Some traders view
sustained RSI readings above 50 as indicative of bullish momentum and readings below 50 as
indicative of bearish momentum. Crossovers of the 50 line can sometimes be used as buy/sell
signals, particularly in trending markets.

 Divergence: This is a more advanced concept.
 Bearish Divergence: Occurs when the price makes a new high, but the RSI fails to make

a corresponding new high. This suggests that the upward momentum is weakening
and could foreshadow a reversal lower.

 Bullish Divergence: Occurs when the price makes a new low, but the RSI fails to make
a corresponding new low (making a higher low instead). This suggests selling
momentum is weakening and might precede a reversal higher.

Important Note: RSI, especially the overbought/oversold levels, tends to work best in ranging or
sideways markets. In strong trending markets, RSI can remain in overbought territory (in a strong
uptrend) or oversold territory (in a strong downtrend) for extended periods without an immediate
reversal. Therefore, using RSI signals in isolation can be risky; confirmation from other indicators or
price action analysis is often recommended.

Implementing RSI in Backtrader

Using the RSI in backtrader is just as simple as using the SMA, thanks to
the RelativeStrengthIndex indicator class.

The Class: You can access it via backtrader.indicators.RelativeStrengthIndex or its
alias bt.ind.RSI.

Instantiation: Similar to the SMA, you create an RSI instance within your strategy's __init__ method,
specifying the period.

import backtrader as bt

class MyRsiStrategy(bt.Strategy):
 params = (
 ('rsi_period', 14), # Default RSI period (Wilder's recommendation)
)

 def __init__(self):
 self.log('Initializing Strategy...')
 self.dataclose = self.datas[0].close # Reference to close price

 # Instantiate the Relative Strength Index indicator
 self.rsi = bt.indicators.RelativeStrengthIndex(

28 Chapter 2: Built-In Indicators

 # self.datas[0], # Operates on datas[0] by default
 period=self.params.rsi_period
)
 # Alias: self.rsi = bt.ind.RSI(period=self.params.rsi_period)

 self.log(f'RSI indicator created with period
{self.params.rsi_period}')
 self.log('Strategy Initialized.')

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()} - {txt}')

 def next(self):
 # We will access self.rsi here later
 pass

Explanation:

1. params = (('rsi_period', 14),): We set the default RSI lookback period to 14, the value
commonly recommended by Wilder.

2. self.rsi = bt.indicators.RelativeStrengthIndex(...): We instantiate the indicator.
 It automatically applies to the close price of self.datas[0] if no specific data line is

provided.
 period=self.params.rsi_period: Sets the lookback period using our strategy

parameter.
3. self.rsi = ...: The RSI indicator object, representing the line of calculated RSI values, is

stored in the self.rsi attribute.

backtrader will now compute the 14-period RSI value for each bar.

Accessing RSI Values: Accessing the calculated RSI value in next() follows the exact same pattern as
the SMA:

 self.rsi[0]: The RSI value for the current bar.
 self.rsi[-1]: The RSI value for the previous bar.
 self.rsi[-n]: The RSI value n bars ago.

Again, backtrader ensures next() is only called once the RSI has enough data (14 periods in this case)
to produce its first valid output.

RSI Use Case: Overbought/Oversold Signal Logic

The most direct way to use RSI is to check if it has crossed into the overbought or oversold zones.

Inside the next() method of MyRsiStrategy

Define thresholds (can be parameters or constants)
rsi_oversold_level = 30.0

Chapter 2: Built-In Indicators 29

rsi_overbought_level = 70.0

Get the current RSI value
current_rsi = self.rsi[0]

--- Basic Threshold Check ---
if current_rsi < rsi_oversold_level:
self.log(f'RSI ({current_rsi:.2f}) is OVERSOLD (<
{rsi_oversold_level})')
Potential buy logic... but careful, it could stay oversold!
elif current_rsi > rsi_overbought_level:
self.log(f'RSI ({current_rsi:.2f}) is OVERBOUGHT (>
{rsi_overbought_level})')
Potential sell logic... but careful, it could stay overbought!

--- More Specific: Check for Zone Entry ---
This identifies the specific bar the RSI crosses the threshold

Check if RSI just crossed BELOW the oversold level
if self.rsi[0] < rsi_oversold_level and self.rsi[-1] >= rsi_oversold_level:
 self.log(f'SIGNAL: RSI ({current_rsi:.2f}) crossed INTO OVERSOLD Zone (<
{rsi_oversold_level})')
 # --- Potential Buy Signal Logic ---
 # E.g., self.buy() if not self.position else None

Check if RSI just crossed ABOVE the overbought level
elif self.rsi[0] > rsi_overbought_level and self.rsi[-1] <=
rsi_overbought_level:
 self.log(f'SIGNAL: RSI ({current_rsi:.2f}) crossed INTO OVERBOUGHT Zone
(> {rsi_overbought_level})')
 # --- Potential Sell Signal / Close Long Logic ---
 # E.g., self.sell() / self.close() if self.position else None

Optional: Check for exit from zones (e.g., RSI crossing back above 30 or
below 70)
elif self.rsi[0] > rsi_oversold_level and self.rsi[-1] <=
rsi_oversold_level:
self.log(f'INFO: RSI ({current_rsi:.2f}) crossed back ABOVE OVERSOLD
Zone')
elif self.rsi[0] < rsi_overbought_level and self.rsi[-1] >=
rsi_overbought_level:
self.log(f'INFO: RSI ({current_rsi:.2f}) crossed back BELOW OVERBOUGHT
Zone')

The "Zone Entry" logic is often more useful for generating discrete signals, as it pinpoints the exact bar
the condition was met, rather than triggering repeatedly while RSI stays within the zone.

Visualisation: When cerebro.plot() is called for a strategy using RSI, backtrader is smart enough
to typically display the RSI indicator in its own separate panel below the main price chart. This is
because RSI values (0-100) are on a completely different scale than price. This dedicated panel makes
it very easy to:

 See the RSI line oscillating.

30 Chapter 2: Built-In Indicators

 Visually identify when it crosses the overbought (e.g., 70) or oversold (e.g., 30) levels. You might
want to mentally draw or imagine horizontal lines at these levels on the plot.

 Compare RSI movements (peaks, troughs, divergences) with the price action in the panel
above.

This automatic separation of indicators with different scales is a very convenient feature
of backtrader's plotting system.

Chaining Indicators: Smoothing the RSI

One of the powerful features of backtrader's indicator system is composability, or chaining. This
means you can use the output line of one indicator as the input data for another indicator.

Why do this? Indicator lines, especially oscillators like RSI, can sometimes be "noisy," meaning they
fluctuate rapidly and might generate frequent signals, some of which could be false (whipsaws).
Applying a smoothing mechanism, like a Simple Moving Average, directly to the indicator's output line
can help filter out some of this noise.

Example: SMA of RSI A common technique is to calculate an SMA of the RSI line itself. This creates a
second, smoother line based on the average RSI value over a specified period.

Potential uses for an SMA of RSI include:

 Generating signals when the raw RSI line crosses its own SMA (e.g., RSI crossing above RSI-
SMA as a buy signal).

 Using the smoothed RSI-SMA line for threshold crosses instead of the raw RSI, potentially
reducing whipsaws.

 Analyzing the trend of the RSI itself via the slope of the RSI-SMA.

Implementation: Implementing this in backtrader is intuitive. You simply pass the indicator
object (which represents its output line) as the data input when instantiating the second indicator.

Let's add an SMA of the RSI to our strategy's __init__:

Inside the __init__ method of a strategy

First, define the RSI indicator
self.rsi = bt.indicators.RelativeStrengthIndex(
 period=self.params.rsi_period # e.g., 14
)

Now, define an SMA, using self.rsi as the input data
self.rsi_sma = bt.indicators.SimpleMovingAverage(
 self.rsi, # Pass the RSI indicator object/line here!
 period=self.params.rsi_sma_period # Define a period for the SMA, e.g., 10
)
Alias: self.rsi_sma = bt.ind.SMA(self.rsi,
period=self.params.rsi_sma_period)

Chapter 2: Built-In Indicators 31

self.log(f'SMA of RSI created with period {self.params.rsi_sma_period}')

Explanation: Notice that instead of self.datas[0] or self.data.close, we pass self.rsi as the
first argument to bt.ind.SimpleMovingAverage. backtrader understands that self.rsi represents
a calculated line and applies the SMA to those values.

Accessing the Chained Indicator: You access the value of the chained indicator in next() just like
any other indicator:

Inside next()
current_rsi_value = self.rsi[0]
current_rsi_sma_value = self.rsi_sma[0] # Access the SMA of RSI

Example Logic: RSI crossing its SMA
if current_rsi_value > current_rsi_sma_value and self.rsi[-1] <=
self.rsi_sma[-1]:
 self.log(f'RSI ({current_rsi_value:.2f}) crossed ABOVE its SMA
({current_rsi_sma_value:.2f})')
 # Potential buy signal...
elif current_rsi_value < current_rsi_sma_value and self.rsi[-1] >=
self.rsi_sma[-1]:
 self.log(f'RSI ({current_rsi_value:.2f}) crossed BELOW its SMA
({current_rsi_sma_value:.2f})')
 # Potential sell signal...

This chaining capability allows for the creation of more sophisticated analytical tools by building upon
the basic indicators provided by backtrader.

Hands-On: The MyStrategyWithIndicators Code

Now, let's put the concepts of SMA, RSI, and chaining together by examining
the MyStrategyWithIndicators class, which incorporates these elements. This provides a practical
example of how indicators are defined and accessed within a strategy structure.

Here is the code for the strategy class:

Full Strategy Class Code
import backtrader as bt

class MyStrategyWithIndicators(bt.Strategy):
 """
 Demonstrates basic instantiation and access for SMA and RSI,
 including an example of chaining (SMA on RSI).
 """
 # Define parameters for the strategy
 params = (
 ('sma_period', 20), # Period for the Simple Moving Average
 ('rsi_period', 14), # Period for the Relative Strength Index
 ('rsi_sma_period', 10), # Period for the SMA applied to the RSI
 ('log_interval', 20), # How often to log values in next()

32 Chapter 2: Built-In Indicators

)

 def log(self, txt, dt=None):
 ''' Logging function for this strategy'''
 # Uses the date from the primary data feed (datas[0])
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()} - {txt}')

 def __init__(self):
 ''' Strategy constructor - called once before backtesting starts '''
 self.log(f'--- Strategy {self.__class__.__name__} Initializing ---')

 # Keep a reference to the primary data feed's close line
 self.dataclose = self.datas[0].close
 self.log(f'Data feed reference stored.')

 # 1. Instantiate Simple Moving Average (SMA)
 self.sma = bt.indicators.SimpleMovingAverage(
 self.datas[0], # Apply to the default data feed
 period=self.params.sma_period
)
 self.log(f'SMA indicator created with period
{self.params.sma_period}')

 # 2. Instantiate Relative Strength Index (RSI)
 self.rsi = bt.indicators.RelativeStrengthIndex(
 period=self.params.rsi_period
 # Automatically applies to datas[0].close
)
 self.log(f'RSI indicator created with period
{self.params.rsi_period}')

 # 3. Instantiate Chained Indicator: SMA of RSI
 # We will keep this commented out initially for clarity,
 # but show how it would be done.
 self.rsi_sma = None # Initialize to None
 # UNCOMMENT THE FOLLOWING LINES TO ACTIVATE RSI_SMA:
 # self.rsi_sma = bt.indicators.SimpleMovingAverage(
 # self.rsi, # Apply SMA to the self.rsi line object
 # period=self.params.rsi_sma_period
 #)
 # self.log(f'SMA of RSI created with period
{self.params.rsi_sma_period}')
 # if self.rsi_sma is None:
 # self.log(f'SMA of RSI is currently INACTIVE (commented out).')

 self.log(f'--- Strategy {self.__class__.__name__} Initialized ---')

 def next(self):
 ''' Called on each bar after the minimum period requirement is met
'''

 # Log indicator values periodically based on log_interval parameter
 if len(self) % self.params.log_interval == 0:
 current_close = self.dataclose[0]
 current_sma = self.sma[0]

Chapter 2: Built-In Indicators 33

 current_rsi = self.rsi[0]

 log_msg = (f'Bar: {len(self)}, Close: {current_close:.2f}, '
 f'SMA({self.params.sma_period}): {current_sma:.2f}, '
 f'RSI({self.params.rsi_period}): {current_rsi:.2f}')

 # Include RSI_SMA in log if it's active
 if self.rsi_sma:
 current_rsi_sma = self.rsi_sma[0]
 log_msg += f', RSI_SMA({self.params.rsi_sma_period}):
{current_rsi_sma:.2f}'

 self.log(log_msg)

 # --- Placeholder for actual trading logic ---
 # This strategy doesn't place trades yet, it just demonstrates
 # indicator setup and access. Future chapters will add buy/sell logic
here.
 # Example checks we could add:
 # if self.rsi[0] < 30 and self.rsi[-1] >= 30:
 # self.log("RSI crossed below 30 - Potential Buy Signal Area")
 #
 # if self.dataclose[0] > self.sma[0] and self.dataclose[-1] <=
self.sma[-1]:
 # self.log("Price crossed above SMA - Potential Buy Signal")

 pass # End of next() method

Code Walkthrough & Cerebro Integration

Let's break down the MyStrategyWithIndicators class and see how to run it.

1. params:

 We define default periods for SMA (20), RSI (14), and the SMA-of-RSI (10).
 log_interval is added to control how frequently we print values in next(), avoiding

excessive output.

2. log(self, txt, dt=None):

 A helper method for standardized logging, printing the date followed by the message.

3. __init__(self):

 This method runs only once when the strategy is first initialized by Cerebro.
 self.dataclose = self.datas[0].close: Stores a reference to the close price line.
 self.sma = bt.ind.SimpleMovingAverage(...): Creates the SMA instance, applying it to

the primary data feed (self.datas[0]) using the sma_period parameter.
 self.rsi = bt.ind.RelativeStrengthIndex(...): Creates the RSI instance using

the rsi_period. It implicitly uses self.datas[0].close.

34 Chapter 2: Built-In Indicators

 self.rsi_sma = ...: The code to create the SMA of the RSI is included but commented out
by default. We initialize self.rsi_sma to None first. To activate it, you would uncomment the
instantiation lines.

 Logging messages confirm which indicators are created and with which periods.

4. next(self):

 This method runs for each bar of data, but only after enough bars have passed to satisfy
the minperiod of all active indicators (in this case, dictated by the 20-period SMA initially).

 len(self) gives the current bar number being processed (starting from 1 after
the minperiod).

 The if len(self) % self.params.log_interval == 0: block demonstrates accessing the
current values ([0]) of close, sma, and rsi.

 It includes logic to also log the rsi_sma[0] value if the self.rsi_sma indicator was activated
in __init__.

 Crucially, this next() method contains no trading logic (self.buy(), self.sell()) yet. Its
purpose here is purely to demonstrate indicator setup and value access. We'll add trading
logic based on indicator signals in later chapters.

Cerebro Integration: To run this strategy, we integrate it into the Cerebro workflow established in
Chapter 1.

--- Assume previous code for imports and data loading ---
(Using yfinance download and PandasData feed as in Chapter 1)
!pip install yfinance
import yfinance as yf
ticker = 'AAPL'
start_date = '2020-01-01'
end_date = '2023-12-31'
dataframe = yf.download(ticker, start=start_date, end=end_date)
dataframe.columns = dataframe.columns.droplevel(1)
data = bt.feeds.PandasData(dataname=dataframe)

--- Cerebro Setup ---
cerebro = bt.Cerebro()

Add the strategy - we can override parameters here
cerebro.addstrategy(
 MyStrategyWithIndicators,
 sma_period=25, # Override default SMA period
 rsi_period=10 # Override default RSI period
 # rsi_sma_period = 7 # Override if RSI_SMA is active
)
print("Strategy MyStrategyWithIndicators added to Cerebro.")

Add the data feed
cerebro.adddata(data)
print("Data feed added.")

Configure broker

Chapter 2: Built-In Indicators 35

cerebro.broker.setcash(10000.0)
cerebro.broker.setcommission(commission=0.001)
print("Broker configured (Cash: $10,000.00, Commission: 0.1%).")

Run the backtest
print(f'\nStarting Portfolio Value: {cerebro.broker.getvalue():,.2f}')
results = cerebro.run()
print(f'Final Portfolio Value: {cerebro.broker.getvalue():,.2f}')

--- Plotting ---
Ensure you run '%matplotlib inline' in a separate cell before this in
Colab/Jupyter
import matplotlib
%matplotlib inline
print("\nGenerating plot...")
try:
 cerebro.plot(style='candlestick', barup='green', bardown='red',
volume=True, iplot=False)
 print("Plot displayed/saved.")
except Exception as e:
 print(f"Could not plot results: {e}")

[*********************100%***********************] 1 of 1 completed
Strategy MyStrategyWithIndicators added to Cerebro.
Data feed added.
Broker configured (Cash: $10,000.00, Commission: 0.1%).

Starting Portfolio Value: 10,000.00
2023-12-29 - --- Strategy MyStrategyWithIndicators Initializing ---
2023-12-29 - Data feed reference stored.
2023-12-29 - SMA indicator created with period 25
2023-12-29 - RSI indicator created with period 10
2023-12-29 - --- Strategy MyStrategyWithIndicators Initialized ---
2020-02-28 - Bar: 40, Close: 66.34, SMA(25): 75.81, RSI(10): 23.14
2020-03-27 - Bar: 60, Close: 60.12, SMA(25): 64.95, RSI(10): 44.66
2020-04-27 - Bar: 80, Close: 68.72, SMA(25): 63.99, RSI(10): 59.38
2020-05-26 - Bar: 100, Close: 77.07, SMA(25): 72.82, RSI(10): 65.09
2020-06-23 - Bar: 120, Close: 89.19, SMA(25): 81.19, RSI(10): 77.42
2020-07-22 - Bar: 140, Close: 94.68, SMA(25): 90.61, RSI(10): 65.64
2020-08-19 - Bar: 160, Close: 112.83, SMA(25): 102.12, RSI(10): 72.81
2020-09-17 - Bar: 180, Close: 107.59, SMA(25): 116.66, RSI(10): 38.07
2020-10-15 - Bar: 200, Close: 117.70, SMA(25): 111.57, RSI(10): 58.46
2020-11-12 - Bar: 220, Close: 116.44, SMA(25): 113.71, RSI(10): 58.29
2020-12-11 - Bar: 240, Close: 119.57, SMA(25): 116.82, RSI(10): 57.10
2021-01-12 - Bar: 260, Close: 125.81, SMA(25): 125.70, RSI(10): 48.90
2021-02-10 - Bar: 280, Close: 132.44, SMA(25): 131.03, RSI(10): 51.26
2021-03-11 - Bar: 300, Close: 119.31, SMA(25): 124.89, RSI(10): 44.25
2021-04-09 - Bar: 320, Close: 130.11, SMA(25): 120.30, RSI(10): 74.31
2021-05-07 - Bar: 340, Close: 127.59, SMA(25): 128.88, RSI(10): 48.26
2021-06-07 - Bar: 360, Close: 123.37, SMA(25): 123.84, RSI(10): 49.10
2021-07-06 - Bar: 380, Close: 139.17, SMA(25): 128.50, RSI(10): 84.80
2021-08-03 - Bar: 400, Close: 144.40, SMA(25): 141.66, RSI(10): 60.09
2021-08-31 - Bar: 420, Close: 149.00, SMA(25): 145.04, RSI(10): 62.31
2021-09-29 - Bar: 440, Close: 140.17, SMA(25): 146.12, RSI(10): 36.16

36 Chapter 2: Built-In Indicators

2021-10-27 - Bar: 460, Close: 146.08, SMA(25): 142.10, RSI(10): 62.33
2021-11-24 - Bar: 480, Close: 159.16, SMA(25): 149.46, RSI(10): 82.10
2021-12-23 - Bar: 500, Close: 173.25, SMA(25): 165.45, RSI(10): 62.27
2022-01-24 - Bar: 520, Close: 158.84, SMA(25): 170.38, RSI(10): 27.12
2022-02-22 - Bar: 540, Close: 161.70, SMA(25): 166.09, RSI(10): 36.58
2022-03-22 - Bar: 560, Close: 166.13, SMA(25): 160.39, RSI(10): 61.71
2022-04-20 - Bar: 580, Close: 164.56, SMA(25): 167.49, RSI(10): 45.80
2022-05-18 - Bar: 600, Close: 138.78, SMA(25): 155.05, RSI(10): 33.54
2022-06-16 - Bar: 620, Close: 128.17, SMA(25): 140.51, RSI(10): 31.08
2022-07-18 - Bar: 640, Close: 144.94, SMA(25): 138.12, RSI(10): 57.67
2022-08-15 - Bar: 660, Close: 170.92, SMA(25): 156.30, RSI(10): 79.96
2022-09-13 - Bar: 680, Close: 151.82, SMA(25): 162.16, RSI(10): 38.81
2022-10-11 - Bar: 700, Close: 137.16, SMA(25): 147.82, RSI(10): 32.48
2022-11-08 - Bar: 720, Close: 137.90, SMA(25): 142.46, RSI(10): 40.45
2022-12-07 - Bar: 740, Close: 139.32, SMA(25): 143.85, RSI(10): 39.03
2023-01-06 - Bar: 760, Close: 128.13, SMA(25): 134.50, RSI(10): 43.72
2023-02-06 - Bar: 780, Close: 149.99, SMA(25): 136.33, RSI(10): 70.97
2023-03-07 - Bar: 800, Close: 150.09, SMA(25): 148.84, RSI(10): 56.58
2023-04-04 - Bar: 820, Close: 163.98, SMA(25): 154.28, RSI(10): 72.76
2023-05-03 - Bar: 840, Close: 165.78, SMA(25): 163.53, RSI(10): 57.60
2023-06-01 - Bar: 860, Close: 178.54, SMA(25): 171.05, RSI(10): 75.24
2023-06-30 - Bar: 880, Close: 192.30, SMA(25): 181.34, RSI(10): 80.67
2023-07-31 - Bar: 900, Close: 194.76, SMA(25): 190.12, RSI(10): 67.48
2023-08-28 - Bar: 920, Close: 178.88, SMA(25): 181.69, RSI(10): 49.80
2023-09-26 - Bar: 940, Close: 170.71, SMA(25): 177.93, RSI(10): 36.28
2023-10-24 - Bar: 960, Close: 172.18, SMA(25): 173.93, RSI(10): 39.28
2023-11-21 - Bar: 980, Close: 189.50, SMA(25): 178.00, RSI(10): 74.75
2023-12-20 - Bar: 1000, Close: 193.67, SMA(25): 191.49, RSI(10): 55.22
Final Portfolio Value: 10,000.00

Generating plot...

Chapter 2: Built-In Indicators 37

Plot displayed/saved.

Note how we can easily change the sma_period and rsi_period when
calling cerebro.addstrategy() without altering the MyStrategyWithIndicators class definition
itself. This makes testing different parameter values very efficient.

Interpreting the Output and Plot

When you run the script integrating MyStrategyWithIndicators, you'll observe a few things:

1. Console Output:

 You will see the log messages from the strategy's __init__ method printed once at the
beginning, confirming the indicator creation and periods used (reflecting any overrides
from addstrategy).

 As the backtest runs, you'll see the periodic log messages from the next() method, showing
the calculated Close, SMA, and RSI values for specific bars (every 20 bars by default in our
example). This helps verify that the indicators are indeed being calculated.

 Finally, the starting and final portfolio values will be printed. Since this strategy doesn't trade,
the final value should be very close to the starting value, perhaps slightly lower due to potential
(though unlikely here) minor broker/cash handling effects over time, but certainly not
reflecting any trading profit or loss.

38 Chapter 2: Built-In Indicators

2. The Plot:

 This is where the indicators truly come to life visually. Assuming the plotting works correctly
(using %matplotlib inline in notebooks), you should see a multi-panel chart:

 Top Panel: The main price chart (e.g., candlesticks for AAPL). Crucially, the SMA
line (e.g., the 25-period SMA if we used the override) will be overlaid directly onto the
price data. You can clearly see how it smooths the price action and how the price moves
above and below it.

 Second Panel: Below the price chart, a separate panel will display the RSI
indicator (e.g., the 10-period RSI). You'll see its line oscillating primarily between 0 and
100. You can visually track when it moves into potential overbought (>70) or oversold
(<30) regions relative to the price action above.

 Third Panel (Optional): If you had uncommented the self.rsi_sma lines in the
strategy, backtrader would likely plot this smoothed RSI line. It might appear in
the same panel as the raw RSI (since they share a similar scale), allowing you to see the
raw RSI crossing its own moving average. Alternatively, depending on internal logic, it
might get its own panel.

 Volume Panel: Typically, a panel showing trading volume bars is also included at the
bottom.

This plot is essential. It confirms that backtrader has correctly calculated and displayed the indicators
defined in your strategy. It allows you to visually correlate the indicator movements (SMA slope, RSI
levels, crossovers) with the price action, building intuition for how these tools work and how they might
be used to generate the trading signals we'll implement in later chapters.

Chapter Summary

In this chapter, we took our first deep dive into backtrader's powerful indicator system. We explored
two foundational indicators:

 Simple Moving Average (SMA): A trend-following tool used for smoothing price and
identifying trend direction via its slope and crossovers.

 Relative Strength Index (RSI): A momentum oscillator used to identify potential overbought
and oversold conditions.

We learned how to instantiate these indicators within a strategy's __init__ method
using bt.indicators (or bt.ind), how to configure their period parameter, and how to access their
calculated values ([0], [-1], etc.) within the next() method. We also saw the concept of chaining
indicators, demonstrated by applying an SMA to the RSI output.

Finally, the hands-on walkthrough of MyStrategyWithIndicators showed these concepts integrated
into a full strategy class and Cerebro workflow, culminating in a plot that visually confirms the
indicators' behavior.

Chapter 2: Built-In Indicators 39

With this understanding of how to implement and access basic indicators, we are now ready to
explore more advanced indicators and begin combining their signals to build actual trading logic in
the upcoming chapters.

